Position
Professor in Department of Applied Physics and Physico-informatics, Keio University/
Chair of the Keio Quantum Computing Center
Address
Hiyoshi 3-14-1, Kohoku, Yokohama 223-8522, Japan,
26-512A
Email
yamamoto[at]appi.keio.ac.jp
(Replace “[at]” with “@”)
D.o.B.
18/May/1976

Education
1999-2004 | Ph.D. in Information Physics and Computing, University of Tokyo |
1995-1999 | Bachelor in School of Engineering, University of Tokyo |
Academic appointments
2019- | Professor in Applied Physics and Physico-Informatics, Keio University, Japan |
2011-2019 | Associate Professor in Applied Physics and Physico-Informatics, Keio University, Japan |
2008-2011 | Assistant Professor in Applied Physics and Physico-Informatics, Keio University, Japan |
2007-2008 | Postdoctral Fellow in Department of Engineering, Australian National University, Australia |
2004-2006 | Postdoctral Fellow in Physics and Control & Dynamical Systems, California Institute of Technology, USA |
2003-2007 | Research Fellow of the Japan Society for the Promotion of Science |
Book Publication
[2] | H. I. Nurdin and N. Yamamoto, Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control, Springer (2017). |
[1] | N. Yamamoto, Basics of complex function theory, Shokabo (2015). |
Journal Publication
[92] | K. Wada, N. Yamamoto, and N. Yoshioka, Heisenberg-limited adaptive gradient estimation for multiple observables, PRX Quantum, 6, 020308 (2025) |
[91] | R. Kondo, Y. Sato, R. Raymond, and N. Yamamoto, Recursive quantum relaxation for combinatorial optimization problems, Quantum, 9, 1594 (2025) |
[90] | Y. Sato, H. Tezuka, R. Kondo, and N. Yamamoto, Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters, Phys. Rev. Applied 23, 014063 (2025) |
[89] | K. Oshio, Y. Suzuki, K. Wada, K. Hisanaga, S. Uno, and N. Yamamoto, Adaptive measurement strategy for noisy quantum amplitude estimation with variational quantum circuits, Phys. Rev. A 110, 062423 (2024) |
[88] | Q. Gao, M. Sugawara, P. D. Nation, T. Kobayashi, Y. Ohnishi, H. Tezuka, and N. Yamamoto, A quantum-classical method applied to material design: Photochromic materials optimization for photopharmacology applications, Intelligent Computing, 0108 (2024) |
[87] | K. Kobayashi, K. Fujii, and N. Yamamoto, Feedback-driven quantum reservoir computing for time-series analysis, PRX Quantum (2024) |
[86] | H. Harada, K. Wada, and N. Yamamoto, Doubly optimal parallel wire cutting without ancilla qubits, PRX Quantum, 5, 040308 (2024) |
[85] | K. Wada, K. Fukuchi, and N. Yamamoto, Quantum-enhanced mean value estimation via adaptive measurement, Quantum, 8, 1463 (2024) |
[84] | Y. Sato, R. Kondo, I. Hamamura, T. Onodera, and N. Yamamoto, Hamiltonian simulation for time-evolving partial differential equation, Phys. Rev. Research, 033246, 6 (2024) |
[83] | K Tamura, Y Suzuki, R. Raymond, H. C. Watanabe, Y. Sato, R. Kondo, M. Sugawara, and N. Yamamoto, Noise robustness of quantum relaxation for combinatorial optimization, IEEE Trans. Quantum Engineering, 1-9, 5 (2024) |
[82] | R. Sakuma, S. Kanno, K. Sugisaki, T. Abe, and N. Yamamoto, Entanglement-assisted phase estimation algorithm for calculating dynamical response functions, Phys. Rev. A, 110, 022618 (2024) |
[81] | A. Sone, A. Tanji, and N. Yamamoto, Quantum inception score, Phys. Rev. Research, 6, 033198 (2024) |
[80] | S. Kanno, H. Nakamura, T. Kobayashi, S. Gocho, M. Hatanaka, N. Yamamoto, Q. Gao, Quantum computing quantum Monte Carlo with hybrid tensor network toward electronic structure calculations of large-scale molecular and solid systems, npj Quantum Information, 10, 56 (2024) |
[79] | Y. Suzuki, H. Kawaguchi, and N. Yamamoto, Quantum Fisher kernel for mitigating the vanishing similarity issue, Quantum Science and Technology, 9, 3 (2024) |
[78] | Y. Sano, K. Mitarai, N. Yamamoto, and N. Ishikawa, Accelerating Grover adaptive search: qubit and gate count reduction strategies with higher-order formulations, IEEE Trans. Quantum Engineering, 5, 3101712 (2024) |
[77] | N. Mitsuda, T. Ichimura, K. Nakaji, Y. Suzuki, T. Tanaka, R. Raymond, H. Tezuka, T. Onodera, and N. Yamamoto, Approximate complex amplitude encoding algorithm and its application to data classification problems, Phys. Rev. A, 109, 052423 (2024) |
[76] | S. Daimon, K. Tsunekawa, R. Takeuchi, T. Sagawa, N. Yamamoto, and E. Saitoh, Quantum circuit distillation and compression, Japanese J. Applied Physics, 63, 3 (2024) |
[75] | H. Tezuka, S. Uno, and N. Yamamoto, Generative model for learning quantum ensemble via optimal transport loss, Quantum Machine Intelligence, 6, 6 (2024) |
[74] | K. Toyoizumi, N. Yamamoto, and K. Hoshino, Hamiltonian simulation using quantum singular value transformation: complexity analysis and application to the linearized Vlasov-Poisson equation, Phys. Rev. A, 109, 012430 (2024) |
[73] | K. Nakaji, H. Tezuka, and N. Yamamoto, Quantum-classical hybrid neural networks in the neural tangent kernel regime, Quantum Science and Technology, 9, 015022 (2024) |
[72] | K. Endo, Y. Sato, R. Raymond, K. Wada, N. Yamamoto, and H. C. Watanabe, Optimal parameter configurations for sequential optimization of variational quantum eigensolver, Phys Rev Research, 5, 043136 (2023) |
[71] | H. Yano and N. Yamamoto, Quantum information criteria for model selection in quantum state estimation, J. Physics A: Math and Theoretical, 56, 405301 (2023) |
[70] | R. Nagai, S. Kanno, Y. Sato, and N. Yamamoto, Quantum channel decomposition with pre- and post-selection, Phys Rev A, 108, 022615 (2023) |
[69] | Y. Sato, H. C. Watanabe, R. Raymond, R. Kondo, K. Wada, K. Endo, M. Sugawara, and N. Yamamoto, A variational quantum algorithm for generalized eigenvalue problems and its application to finite element method, Phys Rev A, 108, 022429 (2023) |
[68] | K. Miyamoto, N. Yamamoto, and Y. Sakakibara, Quantum algorithm for position weight matrix matching, IEEE Trans. Quantum Engineering, 4, 3101214 (2023) |
[67] | Q. Gao, G. O. Jones, M. Sugawara, T. Kobayashi, H. Yamashita, H. Kawaguchi, S. Tanaka, and N. Yamamoto, Quantum-classical computational molecular design of deuterated high-efficiency OLED emitters, Intelligent Computing, 0037 (2023) |
[66] | A. Sone, N. Yamamoto, T. Holdsworth, and P. Narang, Integrated fluctuation theorems for generic quantum state and quantum channel, Phys Rev Research 5, 023039 (2023) |
[65] | T. Kubota, Y. Suzuki, S. Kobayashi, Q. H. Tran, N. Yamamoto, K. Nakajima, Temporal information processing induced by quantum noise, Phys Rev Research 5, 023057 (2023) |
[64] | M. Croquette et. al., Recent advances toward mesoscopic quantum optomechanics, AVS Quantum Sci. 5, 014403 (2023) |
[63] | D. Miki, N. Matsumoto, A. Matsumura, T. Shichijo, Y. Sugiyama, K. Yamamoto, and N. Yamamoto, Generating quantum entanglement between macroscopic objects with continuous measurement and feedback control, Phys. Rev. A, 107, 032410 (2023) |
[62] | M. Kobayashi, K. Nakaji, and N. Yamamoto, Overfitting in quantum machine learning and entangling dropout, Quantum Machine Intelligence 4, 30 (2022) |
[61] | K. Kishi, T. Satoh, R. Raymond, N. Yamamoto, and Y. Sakakibara, Graph kernels encoding features of all subgraphs by quantum superposition, IEEE J. Emerging and Selected Topics in Circuits and Systems, 12-3, 602/613 (2022) |
[60] | S. Ashhab, N. Yamamoto, F. Yoshihara, and K. Semba, Numerical analysis of quantum circuits for state preparation and unitary operator synthesis, Phys. Rev. A 106, 022426 (2022) |
[59] | K. Wada, R. Raymond, Y. Ohnishi, E. Kaminishi, M. Sugawara, N. Yamamoto, and H. C. Watanabe, Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits, Phys. Rev. A 105, 062421 (2022) |
[58] | T. Satoh, S. Ohmura, M. Sugawara, and N. Yamamoto, Pulse-engineered Control-V gate and its applications on superconducting quantum device, IEEE Trans. Quantum Engineering, 3, 3101610 (2022) |
[57] | S. Ashhab, F. Yoshihara, T. Fuse, N. Yamamoto, A. Lupascu, and K. Semba, Speed limits for quantum gates with weakly anharmonic qubits, Phys. Rev. A, 105, 042614 (2022) |
[56] | K. Nakaji, S. Uno, Y. Suzuki, R. Raymond, T. Onodera, T. Tanaka, H. Tezuka, N. Mitsuda, and N. Yamamoto, Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicator, Phys. Rev. Research, 4, 023136 (2022) |
[55] | H. Tezuka, K. Nakaji, T. Satoh, and N. Yamamoto, Grover search revisited; application to image pattern matching, Phys. Rev. A, 105, 032440 (2022) |
[54] | Y. Suzuki, Q. Gao, K. Pradel, K. Yasuoka, and N. Yamamoto, Natural quantum reservoir computing for temporal information processing, Scientific Reports, 12, 1353 (2022). |
[53] | T. Tanaka, S. Uno, T. Onodera, N. Yamamoto, and Y. Suzuki, Noisy quantum amplitude estimation without noise estimation, Phys. Rev. A 105, 012411 (2022). |
[52] | K. Nakaji and N. Yamamoto, Quantum semi-supervised generative adversarial network for enhanced data classification, Scientific Reports 11, 19649 (2021) |
[51] | H. Yano, Y. Suzuki, K. M. Itoh, R. Raymond, and N. Yamamoto, Efficient discrete feature encoding for variational quantum classifier, IEEE Trans. Quantum Engineering, 2, 1/14 (2021) |
[50] | S. Uno, Y. Suzuki, K. Hisanaga, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto, Modified Grover operator for amplitude estimation, New Journal of Physics 23, 083031 (2021) |
[49] | T. Tanaka, Y. Suzuki, S. Uno, R. Raymond, T. Onodera, and N. Yamamoto, Amplitude estimation via maximum likelihood on noisy quantum computer, Quantum Information Processing, 20, 293 (2021) |
[48] | K. Nakaji and N. Yamamoto, Expressibility of the alternating layered ansatz for quantum computation, Quantum 5, 434 (2021) |
[47] | Q. Gao, G. O. Jones, M. Motta, M. Sugawara, H. C. Watanabe, T. Kobayashi, Y. Ohnishi, H. Nakamura, and N. Yamamoto, Applications of quantum computing for investigations of electronic transitions in Phenylsulfonyl-carbazole TADF emitters, npj Computational Materials, 7, 70 (2021) |
[46] | S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Linear open quantum systems with passive Hamiltonians and a single local dissipative process, Automatica 125, 109477 (2021) |
[45] | R. Shimazu and N. Yamamoto, Quantum functionalities via feedback amplification, Phys. Rev. Applied 15, 044006 (2021) |
[44] | Q. Gao, H. Nakamura, T. P. Gujarati, G. O. Jones, J. E. Rice, S. P. Wood, M. Pistoia, J. M. Garcia, and N. Yamamoto, Computational investigations of the Lithium Superoxide Dimer rearrangement on noisy quantum devices, J. of Physical Chemistry A, 125-9, 1827/1836 (2021) |
[43] | K. Endo, T. Nakamura, K. Fujii, and N. Yamamoto, Quantum self-learning Monte Carlo and quantum-inspired Fourier transform sampler, Phys. Rev. Research 2, 043442 (2020). |
[42] | K. Kobayashi and N. Yamamoto, Quantum speed limit for robust state characterization and engineering, Phys. Rev. A, 102, 042606 (2020). |
[41] | J. Chen, H. I. Nurdin, and N. Yamamoto, Temporal information processing on noisy quantum computers, Phys. Rev. Applied 14, 024065 (2020). |
[40] | Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto, Analysis and synthesis of feature map for kernel-based quantum classifier, Quantum Machine Intelligence, 2, 1-9 (2020) |
[39] | Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto, Quantum amplitude estimation without phase estimation, Quantum Information Processing, 19, 75 (2020) |
[38] | Y. Kato, N. Yamamoto, and H. Nakao, Semiclassical phase reduction theory for quantum synchronization, Physical Review Research, 1, 033012 (2019) |
[37] | K. Kobayashi and N. Yamamoto, Control limit on quantum state preparation under decoherence, Phys. Rev. A, 99, 052347 (2019) |
[36] | K. Gallock Yoshimura and N. Yamamoto, Generating robust entanglement via quantum feedback, J. Phys. B: At. Mol. Opt. Phys., 52, 055501 (2019) |
[35] | Y. Yokotera and N. Yamamoto, Sensitivity analysis of cascaded quantum feedback amplifier, IEEE Control Systems Letters, 3-1, 156/161 (2018). |
[34] | Y. Kashiwamura and N. Yamamoto, Replacing measurement feedback with coherent feedback for quantum state preparation, Phys. Rev. A, 97, 062341 (2018). |
[33] | S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Cascade and locally dissipative realizations of linear quantum systems for pure Gaussian state covariance assignment, Automatica, 90, 263/270 (2018). |
[32] | N. Yamamoto and T. Mikami, Entanglement-assisted quantum feedback control, Quantum Info. Processing, 16, 179 (2017). |
[31] | S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Pure Gaussian states from quantum harmonic oscillator chains with a single local dissipative process, J. Phys. A: Math. Theor., 50, 135301 (2017). |
[30] | H. Nakao and N. Yamamoto, Optimal control for perfect state transfer in linear quantum memory, J. Phys. B: At. Mol. Opt. Phys., 50, 065501 (2017). |
[29] | Y. Yokotera and N. Yamamoto, Geometric control theory for quantum back-action evasion, EPJ Quantum Technology, 3, 15 (2016). |
[28] | N. Yamamoto, Quantum feedback amplification, Phys. Rev. Applied, 5, 044012 (2016). |
[27] | M. Guta and N. Yamamoto, System identification for passive linear quantum systems, IEEE Trans. Automat. Contr. 61-4, 921/936 (2016). |
[26] | N. Yamamoto, Coherent versus measurement feedback: Linear systems theory for quantum information, Phys. Rev. X, 4, 041029 (2014). |
[25] | N. Yamamoto and M. R. James, Zero dynamics principle for perfect quantum memory in linear networks, New J. Physics, 16, 073032 (2014). |
[24] | N. Yamamoto, Decoherence-free linear quantum systems, IEEE Trans. Automat. Contr 59-7, 1845/1857 (2014). |
[23] | Y. Kato and N. Yamamoto, Structure identification and state initialization of spin networks with limited access, New J. Physics, 16, 023024 (2014). |
[22] | S. Tanaka and N. Yamamoto, Information amplification via postselection: A parameter estimation perspective, Phys. Rev. A, 88, 042116 (2013) |
[21] | Y. Ikeda and N. Yamamoto, Deterministic generation of Gaussian pure states in a quasi-local dissipative system, Phys. Rev. A 87, 033802 (2013). |
[20] | S. Tanaka and N. Yamamoto, Robust adaptive measurment scheme for qubit state preparation, Phys. Rev. A 86, 062331 (2012). |
[19] | H. I. Nurdin and N. Yamamoto, Distributed entanglement generation between continuous-mode Gaussian fields with measurement-feedback enhancement, Phys. Rev. A 86, 022337 (2012). |
[18] | G. Tajimi and N. Yamamoto, Dynamical Gaussian state transfer with quantum error correcting architecture, Phys. Rev. A 85, 022303 (2012). |
[17] | N. Yamamoto, Pure Gaussian state generation via dissipation: A quantum stochastic differential equation approach, Phil. Trans. Roy. Soc. A, 370, 5324/5337 (2012). |
[16] | K. Koga and N. Yamamoto, Dissipation induced pure Gaussian state, Phys. Rev. A 85, 022103 (2012). |
[15] | S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa, Experimental demonstration of coherent feedback control on optical field squeezing, IEEE Trans. Automat. Contr. 57-8, 2045/2050 (2012). |
Before 2010:
[14] | K. Kashima and N. Yamamoto, Control of quantum systems despite feedback delay, IEEE Trans. Automat. Contr. 54-4, 876/881 (2009). |
[13] | N. Yamamoto and L. Bouten, Quantum risk-sensitive filtering and robustness, IEEE Trans. Automat. Contr. 54-1, 92/107 (2009). |
[12] | N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen, Avoiding entanglement sudden-death via measurement feedback control in a quantum network, Phys. Rev. A 78, 042339 (2008). |
[11] | N. Yamamoto and S. Hara, Relation between fundamental estimation limit and stability in linear quantum systems with imperfect measurement, Phys. Rev. A 76, 034102 (2007). |
[10] | N. Yamamoto and M. Fazel, Computational approach to quantum encoder design for purity optimization, Phys. Rev. A 76, 012327 (2007). |
[9] | N. Yamamoto, K. Tsumura, and S. Hara, Feedback control of quantum entanglement in a two-spin system, Automatica 43-6, 981/992 (2007). |
[8] | N. Yamamoto, Robust observer for uncertain linear quantum systems, Phys. Rev. A 74, 032107 (2006). |
[7] | N. Yamamoto, Parametrization of the feedback Hamiltonian realizing a pure steady state, Phys. Rev. A 72, 024104 (2005). |
[6] | N. Yamamoto, S. Hara, and K. Tsumura, Suboptimal quantum-error-correcting procedure based on semidefinite programming, Phys. Rev. A 71, 022322 (2005). |
[5] | N. Yamamoto, Immersion for polynomial-type stochastic systems into quadratic in the state representation and a low-dimensional quadratic in the state representation of a quantum dynamics, SICE Trans., 41-11 (2005). |
[4] | N. Yamamoto, K. Tsumura, and S. Hara, Local reachability and local observability of controlled quantum dynamics, SICE Trans., 40-11 (2004). |
[3] | N. Yamamoto, K. Tsumura, and S. Hara, Analysis of equilibrium points of quantum controlled dynamics, SICE Trans., 40-7 (2004). |
[2] | N. Yamamoto, K. Tsumura, and S. Hara, Controlled dynamics model for quantum systems, SICE Trans., 40-2 (2004). |
[1] | N. Yamamoto and K. Tsumura, Geometric structure of nonlinear systems based on Hamilton-Jacobi-Inequality, SICE Trans., 38-2 (2002). |