Naoki Yamamoto
Position:

Associate Professor in
Department of Applied Physics and Physico-informatics,
Keio University

Address:
Hiyoshi 3-14-1, Kohoku, Yokohama 223-8522, Japan,
Office:
26-512A
Email:
yamamoto[at]appi.keio.ac.jp (Replace "[at]" with "@")
D.o.B.:
18/May/1976

Education:

1999-2004  Ph.D. in Information Physics and Computing, University of Tokyo
1995-1999  Bachelor in School of Engineering, University of Tokyo

Academic appointments:

2011-         Associate Professor in Applied Physics and Physico-Informatics,
                   Keio University, Japan
2008-2011  Assistant Professor in Applied Physics and Physico-Informatics,
                   Keio University, Japan
2007-2008  Postdoctral Fellow in Department of Engineering,
                   Australian National University, Australia
2004-2006  Postdoctral Fellow in Physics and Control & Dynamical Systems,
                   California Institute of Technology, USA
2003-2007  Research Fellow of the Japan Society for the Promotion of Science

Awards:

2005  Paper award from Society of Instrument and Control Engineers
2004  Paper award from Society of Instrument and Control Engineers
2004  Young author award from Society of Instrument and Control Engineers


Book Publication:

[2] H. I. Nurdin and N. Yamamoto, Linear Dynamical Quantum Systems:
       Analysis, Synthesis, and Control, Springer (2017).
[1] N. Yamamoto, Basics of complex function theory, Shokabo (2015).

Journal Publication:

[35] Y. Yokotera and N. Yamamoto, Sensitivity analysis of cascaded quantum
       feedback amplifier, IEEE Control Systems Letters, to appear (2018).
[34] Y. Kashiwamura and N. Yamamoto, Replacing measurement feedback
       with coherent feedback for quantum state preparation,
       Phys. Rev. A, 97, 062341 (2018).
[33] S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Cascade and locally dissipative
       realizations of linear quantum systems for pure Gaussian state covariance
       assignment, Automatica, 90, 263/270 (2018).
[32] N. Yamamoto and T. Mikami, Entanglement-assisted quantum feedback control,
       Quantum Info. Processing, 16, 179 (2017).
[31] S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Pure Gaussian states from
       quantum harmonic oscillator chains with a single local dissipative process,
       J. Phys. A: Math. Theor., 50, 135301 (2017).
[30] H. Nakao and N. Yamamoto, Optimal control for perfect state transfer in linear
       quantum memory, J. Phys. B: At. Mol. Opt. Phys., 50, 065501 (2017).
[29] Y. Yokotera and N. Yamamoto, Geometric control theory for quantum back-action
       evasion, EPJ Quantum Technology, 3, 15 (2016).
[28] N. Yamamoto, Quantum feedback amplification,
       Phys. Rev. Applied, 5, 044012 (2016).
[27] M. Guta and N. Yamamoto, System identification for passive linear quantum systems,
       IEEE Trans. Automat. Contr. 61-4, 921/936 (2016).
[26] N. Yamamoto, Coherent versus measurement feedback: Linear systems theory
       for quantum information, Phys. Rev. X, 4, 041029 (2014).
[25] N. Yamamoto and M. R. James, Zero dynamics principle for perfect quantum memory
       in linear networks, New J. Physics, 16, 073032 (2014).
[24] N. Yamamoto, Decoherence-free linear quantum systems, IEEE Trans. Automat. Contr
       59-7, 1845/1857 (2014).
[23] Y. Kato and N. Yamamoto, Structure identification and state initialization
       of spin networks with limited access, New J. Physics, 16, 023024 (2014).
[22] S. Tanaka and N. Yamamoto, Information amplification via postselection:
       A parameter estimation perspective, Phys. Rev. A, 88, 042116 (2013).
[21] Y. Ikeda and N. Yamamoto, Deterministic generation of Gaussian pure states
       in a quasi-local dissipative system, Phys. Rev. A 87, 033802 (2013).
[20] S. Tanaka and N. Yamamoto, Robust adaptive measurment scheme for qubit state
       preparation, Phys. Rev. A 86, 062331 (2012).
[19] H. I. Nurdin and N. Yamamoto, Distributed entanglement generation between
       continuous-mode Gaussian fields with measurement-feedback enhancement,
       Phys. Rev. A 86, 022337 (2012).
[18] G. Tajimi and N. Yamamoto, Dynamical Gaussian state transfer with quantum error
       correcting architecture, Phys. Rev. A 85, 022303 (2012).
[17] N. Yamamoto, Pure Gaussian state generation via dissipation: A quantum
       stochastic differential equation approach,
       Phil. Trans. Roy. Soc. A, 370, 5324/5337 (2012).
[16] K. Koga and N. Yamamoto, Dissipation induced pure Gaussian state,
       Phys. Rev. A 85, 022103 (2012).
[15] S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa, Experimental
       demonstration of coherent feedback control on optical field squeezing,
       IEEE Trans. Automat. Contr. 57-8, 2045/2050 (2012).
[14] K. Kashima and N. Yamamoto, Control of quantum systems despite feedback delay,
       IEEE Trans. Automat. Contr. 54-4, 876/881 (2009).
[13] N. Yamamoto and L. Bouten, Quantum risk-sensitive filtering and robustness,
       IEEE Trans. Automat. Contr. 54-1, 92/107 (2009).
[12] N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen, Avoiding entanglement
       sudden-death via measurement feedback control in a quantum network,
       Phys. Rev. A 78, 042339 (2008).
[11] N. Yamamoto and S. Hara, Relation between fundamental estimation limit and
       stability in linear quantum systems with imperfect measurement, Phys. Rev. A
       76, 034102 (2007).
[10] N. Yamamoto and M. Fazel, Computational approach to quantum encoder design
       for purity optimization, Phys. Rev. A 76, 012327 (2007).
 [9]  N. Yamamoto, K. Tsumura, and S. Hara, Feedback control of quantum entangle-
       ment in a two-spin system, Automatica 43-6, 981/992 (2007).
 [8]  N. Yamamoto, Robust observer for uncertain linear quantum systems, Phys.
       Rev. A 74, 032107 (2006).
 [7]  N. Yamamoto, Parametrization of the feedback Hamiltonian realizing a pure
       steady state, Phys. Rev. A 72, 024104 (2005).
 [6]  N. Yamamoto, S. Hara, and K. Tsumura, Suboptimal quantum-error-correcting
       procedure based on semidefinite programming, Phys. Rev. A 71, 022322 (2005).
 [5]  N. Yamamoto, Immersion for polynomial-type stochastic systems into quadratic
       in the state representation and a low-dimensional quadratic in the state repre-
       sentation of a quantum dynamics, SICE Trans., 41-11 (2005).
 [4]  N. Yamamoto, K. Tsumura, and S. Hara, Local reachability and local observability
       of controlled quantum dynamics, SICE Trans., 40-11 (2004).
 [3]  N. Yamamoto, K. Tsumura, and S. Hara, Analysis of equilibrium points of quantum
       controlled dynamics, SICE Trans., 40-7 (2004).
 [2]  N. Yamamoto, K. Tsumura, and S. Hara, Controlled dynamics model for quantum
       systems, SICE Trans., 40-2 (2004).
 [1]  N. Yamamoto and K. Tsumura, Geometric structure of nonlinear systems based
       on Hamilton-Jacobi-Inequality, SICE Trans., 38-2 (2002).

Peer-reviewed Conference Papers:

[18] I. R. Petersen, M. R. James, V. Ugrinovskii, and N. Yamamoto, A systems
       theory approach to the synthesis of minimum noise phase-insensitive
       quantum amplifiers, European Control Conference (2018).
[17] Y. Kashiwamura and N. Yamamoto, Dissipative-dissipative control strategy for
       quantum coherent feedback, Proceedings of IFAC World Congress,
       11760/11763 (2017).
[16] Y. Yokotera and N. Yamamoto, Quantum back-action evasion via coherent feedback
       control: A geometric control approach, Proceedings of 55th IEEE CDC, 2539/2542 (2016).
[15] N. Yamamoto, H. I. Nurdin, M. R. James, Quantum state transfer for multi-input
       linear quantum systems, Proceedings of 55th IEEE CDC, 2535/2538 (2016).
[14] S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Pure Gaussian quantum states
       from passive Hamiltonians and an active local dissipative process,
       Proceedings of 55th IEEE CDC, 2519/2522 (2016).
[13] H. I. Nurdin, M. R. James, and N. Yamamoto, Perfect absorber of arbitrary single
       photon fields with a tunable coupling parameter: A QSDE approach,
       Proceedings of 55th IEEE CDC, 2513/2518 (2016).
[12] N. Yamamoto and T. Mikami, Quantum linear feedback control with entanglement
       assistance, Proceedings of 54th IEEE CDC, 5778/5783 (2015).
[11] S. Ma, M. J. Woolley, I. R. Petersen, and N. Yamamoto, Preparation of pure Gaussian
      states via cascaded quantum systems, Proceedings of 2014 IEEE MSC (2014).
[10] M. Guta and N. Yamamoto, Systems identification for passive linear quantum
      systems: the transfer function approach, Proceedings of 52nd IEEE CDC (2013).
[9]  Y. Kato and N. Yamamoto, Estimation and initialization of quantum network via
      continuous measurement on single node, Proceedings of 52nd IEEE CDC (2013).
[8]  H. I. Nurdin and N. Yamamoto, LQG measurement-feedback control of distributed
      entanglement generation between continuous-mode Gaussian fields,
      Proceedings of 51st IEEE CDC (2012).
[7]  K. Ohki, S. Hara, and N. Yamamoto, On quantum-classical equivalence for linear
      systems control problems and its application to entanglement assignment,
      Proceedings of 50th IEEE CDC (2011).
[6]  S. Iida, K. Ohki, and N. Yamamoto, Robust quantum Kalman filtering under
      the phase uncertainty of the probe laser field, Proceedings of IEEE MSC (2010).
[5]  N. Yamamoto, Exact solution for the max-min quantum error recovery problem,
      Proceedings of 48th IEEE CDC (2009).
[4]  N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen, Feedback control
      of entanglement in a linear quantum network: A case study, Proceedings of
      47th IEEE CDC (2008).
[3]  N. Yamamoto, Robust observer for uncertain linear quantum systems, Procee-
      dings of 45th IEEE CDC (2006).
[2]  N. Yamamoto, K. Tsumura, and S. Hara, Feedback control of quantum entangle-
      ment in a two-spin system, Proceedings of 44th IEEE CDC-ECC (2005).
[1]  N. Yamamoto, H. Machida, K. Tsumura, and S. Hara, Local reachability of sto-
      chastic quantum dynamics with application to feedback control of a single-spin
      system, Proceedings of 44th IEEE CDC-ECC (2005).

Survey and Tutorial Papers:

[10] N. Yamamoto, Continuous-time Kalman filtering and quantum state estimation,
      Journal of SICE, 56-9, */* (2017).
[9]  N. Yamamoto, Estimation theory for quantum feedback control and its applications,
      RIMS Kokyuroku, 1834-5, 96/108 (2013).
[8]  N. Yamamoto, Mathematical basis of quantum feedback control,
      Suuri-Kagaku, 585, 21/27 (2012).
[7]  N. Yamamoto, An introduction to stochastic differential equations,
      Journal of SICE, 50-11, 937/943 (2011).
[6]  N. Yamamoto, Quantum mechanics and stochastic systems theory,
      Journal of SICE, 50-11, 993/999 (2011).
[5]  N. Yamamoto, Simulating quantum dynamics: Measurement and control viewpoints,
      Simulation, 28-4, 142/148 (2009).
[4]  N. Yamamoto, Quantum information technologies and control theory, Journal
      of ISCIE, 53-6, 217/223 (2009).
[3]  N. Yamamoto and K. Tsumura, Control theory for quantum systems, Journal
      of SICE, 46-3, 170/177 (2007).
[2]  N. Yamamoto, Dynamical creation of quantum entanglement via feedback
      control, Journal of ISCIE, 49-11, 448/453 (2005).
[1]  N. Yamamoto, Possibilities of quantum control theory, Journal of ISCIE, 48-6,
      241/242 (2004).